

Immunotherapy, an exciting era!!

Yousef Zakharia MD

University of Iowa and Holden Comprehensive Cancer Center

Alliance Meeting, Chicago November 2016

Presentation Objectives

- General approach to immunotherapy
- Learn pathophysiology of checkpoint inhibitors.
- Review the landmark trials that lead to FDA approvals.

Immune Modulatory Receptors

Mellman I et al. Nature. 2011;480:480-489.

JNIVERSITY OF **IOWA**

HOLDEN COMPREHENSIVE CANCER CENTER University of Iowa Health Care

Mechanisms of Immune System Evasion/Suppression by Tumors

Drake CG, et al. Adv Immunol. 2006;90:51-81. Vesely MD, et al. Annu Rev Immunol. 2011;29:235-271.

Historical Overview of Development of Immunoth

1970	 Autologous and allogeneic tumor cell cancer vaccines Intratumoral Bacillus Calmette-Guérin
1980	 IFN-α IL-2 IL-2 and LAK cells Other cytokines (TNF, IFNγ) IL-2 and TILs
1990	 Gene-transfected tumor cell vaccines Defined antigen vaccines, viral vectors, and DCs
2000	 Blockade of T-cell activation checkpoints (CTLA-4) Lymphocyte ablation + TIL T-cell and DC co-stimulatory antibodies Blockade of tumor immune suppressive mechanisms (PD-1) Gene (CAR, TCR, cytokine) modified lymphocytes for adoptive cell transfer
2011	• Combination of immune checkpoint inhibitors (CTLA-4, PD-1)

Surgery Branch, NCI: Overall Survival With High Dose IL

1. Smith FO et al. Clin Cancer Res. 2008;14(17):5610-5618.

ALTRIALS IN ONCOLOGY

Yang, J. C. et al. J Clin Oncol; 24:5576-5583 2006

T-Cell Activation, Proliferation, and Function Is Controlled

by Multiple Agonist and Antagonist Signals

ALLIANCE FOR CLINICAL TRAIS IN ONCOLOGY

The CTLA-4 Experience: Ipilimumab in Melanon

University of Iowa Health Care

^a Estimated overall survival rates as in the pivotal phase 3 study publication.²

- 1. Yervoy (ipilimumab) [package insert]. http://packageinserts.bms.com/pi/pi_yervoy.pdf.
- 2. Hodi FS et al. *N Engl J Med*. 2010;363:711-723.
- 3. Wolchok JD et al. Cancer Immun. 2010;10:9.

The CTLA-4 Experience: Primary Analysis of Pooled OS Data on Ipilimumabi in 1,861 Patients¹

University of Iowa Health Care

1. Schadendorf D et al. European Cancer Congress 2013 (ESMO 2013). Abstract 24.

Targeting PD-1 in Melanoma: KEYNOTE-006 International, Randomized, Phase 3 Study¹

Patients

- Unresectable, stage 3 or 4 melanoma
- ≤1 prior therapy, excluding anti– CTLA-4, PD-1, or PD-L1 agents
- Known BRAF status^a
- ECOG PS 0-1
- No active brain metastases
- No serious autoimmune disease

Stratification factors:

- ECOG PS (0 vs 1)
- Line of therapy (first vs second)
- PD-L1 status (positive^b vs negative)

- Primary endpoints: PFS and OS
- Secondary endpoints: ORR, duration of response, safety

^a Prior anti-*BRAF* targeted therapy was not required for patients with normal LDH levels and no clinically significant tumor-related symptoms or evidence of rapidly progressing disease.

^b Defined as membranous PD-L1 expression in ≥1% of tumor cells as assessed by IHC using the 22C3 antibody.

1. Robert C et al. N Engl J Med. 2015;372:2521-2532.

First Interim Analysis: PFS¹

NIVERSITY OF IOWA

IOLDEN Comprehensive CANCER CENTER University of Iowa Health Care

1. Robert C et al. N Engl J Med. 2015;372:2521-2532.

No. at risk

Second Interim Analysis: OS¹

INIVERSITY OF IOWA

HOLDEN COMPREHENSIVE CANCER CENTER University of Iowa Health Care

1. Robert C et al. N Engl J Med. 2015;372:2521-2532.

No. at risk

Response Rate Was Superior With Pembrolizumab Over Ipilimumab In the Total Population (RECIST v1.1, Central Review)

	Pembrolizumab n = 556	Ipilimumab n = 278
ORR (95% CI)	36% (32-40)	13% (9-18)
Best overall response		
Complete response (CR)	9%	3%
Partial response	27%	10%
Stable disease	11%	15%
NonCR/nonPD ^a	5%	4%
Progressive disease (PD)	40%	49%
Not evaluable ^b	6%	18%
No assessment ^c	2%	<1%
Ongoing responses ^d	81%	81%
Median duration of response (range), days	NR (41 – 429+)	NR (33+ – 418+)

^aPatients without measurable disease per central review at baseline who did not experience complete response or disease progression.

^bPatients for which target lesion was not captured by postbaseline scans or for whom a target lesion was surgically removed.

^cPatients for which no postbaseline scan was performed or those who were not able to be evaluated.

^dIn patients with objective response.

Schachter J, et al. Presented at: SMR Annual Meeting 2015; November 18-21, 2015; San Francisco, CA.

Analysis cut-off date: March 3, 2015.

Response Rate Was Superior With Pembrolizumab Over Ipilimumab In the Total Population (RECIST v1.1, Central Review)

	Pembrolizumab n = 556	Ipilimumab n = 278
ORR (95% CI)	36% (32-40)	13% (9-18)
P = 0.00003 for combined pemb	orolizumab arms vs	; ipilimumab
Partial response	27%	10%
Stable disease	11%	15%
NonCR/nonPD ^a	5%	4%
Progressive disease (PD)	40%	49 %
Not evaluable ^b	6%	18%
No assessment ^c	2%	<1%
Ongoing responses ^d	81%	81%
Median duration of response (range), days	NR (41 – 429+)	NR (33+ – 418+)

^aPatients without measurable disease per central review at baseline who did not experience complete response or disease progression.

^bPatients for which target lesion was not captured by postbaseline scans or for whom a target lesion was surgically removed.

Patients for which no postbaseline scan was performed or those who were not able to be evaluated.

^dIn patients with objective response.

Schachter J, et al. Presented at: SMR Annual Meeting 2015; November 18-21, 2015; San Francisco, CA.

Analysis cut-off date: March 3, 2015.

CA209-067: Study Design

*Verified PD-L1 assay with 5% expression level was used for the stratification of patients; validated PD-L1 assay was used for efficacy analyses. **Patients could have been treated beyond progression under protocol-defined circumstances.

Progression-Free Survival (Intent-to-Treat Population)

Database lock Nov 2015

Progression-free Survival by Tumor PD-L1 Expression

 For the original PD-L1 PFS analysis, the descriptive hazard ratio comparing NIVO+IPI vs NIVO was 0.96, with a similar median PFS in both groups (14 months)

Database lock Nov 2015

10

Current FDA approved SOC in melanoma

- Ipilimumab + Nivolumab
- Pembrolizumab
- Nivolumab

CheckMate-025: Nivolumab in Previously Treated Metastatic RCC

Metastatic RCC with ≤ 2 prior antiangiogenic therapies and ≤ 3 total prior systemic regimens (N = 821) **Nivolumab** 3 mg/kg IV every 2 wks

> **Everolimus** 10 mg PO daily

- Primary endpoint: OS
- Secondary endpoints: PFS, ORR, OR duration, Safety

Kaplan–Meier Curve for Overall Survival.

No. of Median Overall No. of Patients Survival (95% CI) Deaths mo Nivolumab 410 25.0 (21.8-NE) 183 1.0-**Everolimus** 411 215 19.6 (17.6-23.1) Probability of Overall Survival 0.9-Hazard ratio, 0.73 (98.5% CI, 0.57-0.93) 0.8-P=0.002 0.7-0.6-0.5-Nivolumab 0.4-0.3-**Everolimus** 0.2-0.1-0.0-3 6 12 21 24 0 9 15 18 27 30 33 Months No. at Risk Nivolumab 410 389 359 337 305 139 275 73 3 0 213 29 Everolimus 411 366 324 287 265 241 187 115 61 20 2 0

Motzer RJ et al. N Engl J Med 2015;373:1803-1813.

JOURNAL of MEDICINE

JNIVERSITY OF IOWA

UNIVERSITY OF IOWA CheckMate-025: Response Characteristics ଚ Ъ ō O O ° 8 °0 Nivolumab Everolimus On treatment Pts ğ • First response Ongoing response Off treatment õ Q

Wks

Motzer R, et al. N Engl J Med. 2015;373:1803-1813.

 $\mathbf{0}$

Nivolumab is FDA approved for second line metastatic RCC

Bladder Cancer

IMvigor210 and biomarkers of Atezolizumab in mUC

 Atezolizumab (anti-PDL1), the first FDA-approved PD-L1 inhibitor,¹ has demonstrated efficacy in mUC,^{2,3} a disease with high unmet need

Cisplatin-ineligible mUC with no prior treatment for advanced disease

<u>Cohort 2 (N = 310)^{2,3}</u>

 mUC with progression on ≥ 1 platinum-containing regimen

Atezolizumab 1200 mg IV q3w until loss of clinical benefit

Effector T cell, T_{eff}; PD-L1, programmed death-ligand 1. 1. Press release: <u>http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm</u> <u>501762.htm</u>. Trial ID: NCT02108652. 2. Rosenberg *Lancet* 2016. 3. Dreicer ASCO [abstract 4515]. 4. Balar ASCO [abstract LBA4500].

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

Rosenberg J, et al. IMvigor210: biomarkers of atezolizumab in mUC. ASCO 2016

Presented By Jonathan Rosenberg at 2016 ASCO Annual Meeting

5

IMvigor210 and biomarkers of Atezolizumab in mUC

- Atezolizumab (anti-PDL1), the first FDA-approved PD-L1 inhibitor,¹ has demonstrated efficacy in mUC,^{2,3} a disease with high unmet need
- Clinical benefit with cancer immunotherapy may be associated with biomarkers such as T_{eff} genes and mutation load⁵⁻⁷

Effector T cell, T_{eff}; PD-L1, programmed death-ligand 1. 1. Press release: <u>http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm</u> <u>501762.htm</u>. Trial ID: NCT02108652. 2. Rosenberg *Lancet* 2016. 3. Dreicer ASCO [abstract 4515]. 4. Balar ASCO [abstract LBA4500]. 5. Rizvi *Science* 2015. 6. Van Allen *Science* 2015. 7. Peng *Nature* 2015.

PRESENTED AT: ASCO ANNUAL MEETING '16

Slides are the property of the author. Permission required for reuse.

Rosenberg J, et al. IMvigor210: biomarkers of atezolizumab in mUC. ASCO 2016

Presented By Jonathan Rosenberg at 2016 ASCO Annual Meeting

IMvigor210: Baseline Characteristics

Characteristic	All Pts (N = 310)
Age, yrs (range)	66 (32-91)
Male, %	78
White race, %	91
No previous tobacco use, %	35
ECOG PS 0/1, %	38/62
CrCl < 60 mL/min, %	36
Hg < 100 g/L, %	22
Site of primary tumor, % Bladder or urethra/upper tract	82/16
No. of previous systemic regimens in the metastatic setting, % $=0/1/2/3/\ge 4$	19/40/21/13/8
Previous platinum-based regimen, % Cisplatin/carboplatin/other	73/26/1

7

PD-L1 Expression on Immune Cells and Efficacy

- IMvigor210 samples were evenly distributed in PD-L1 IC expression (VENTANA SP142 IHC assay)
- Atezolizumab efficacy in cohort 2 was associated with PD-L1 on IC²
 - Responses occurred in all IC subgroups, but ORR increased with higher PD-L1 expression
 - Longer OS was observed with higher PD-L1 status

IC, tumor-infiltrating immune cell. NE, not estimable. Data cutoff: March 14, 2016. Median follow up: 17.5 mo. 1. Rosenberg ECC 2015 [abstract 21LBA]. 2. Dreicer ASCO 2016 [abstract 4515].

PRESENTED AT: ASCO ANNUAL MEETING '16

of the author. Permission required for reuse.

Rosenberg J, et al. IMvigor210: biomarkers of atezolizumab in mUC. ASCO 2016

27

Mutation Load by FoundationOne and Survival

- Quartile-split mutation load was associated with OS in platinum-treated patients (cohort 2)
- Similar results were seen for 1L cisplatin-ineligible patients (cohort 1)
 - In both cohorts, patients with the highest median mutation load (Q4) had significantly longer OS vs those in Q1-Q3^a

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author, Permission reauired for reuse.

Rosenberg J, et al. IMvigor210: biomarkers of atezolizumab in mUC. ASCO 2016

Presented By Jonathan Rosenberg at 2016 ASCO Annual Meeting

- Atezolizumab produced durable responses in mUC pts progressing during/after treatment with ≥ 1 platinum-based regimen across all evaluated biomarker subgroups.
- Better ORR and/or longer OS associated with elevated PD-L1 expression on tumor infiltrating cells, higher median mutation load.
- The first agent in its class approved to treat locally advanced or metastatic urothelial carcinoma during or following platinum-based chemotherapy.

The Future Is in Combinations

Other Interesting Immune Approaches

VIVERSITY OF IOWA

HOLDEN COMPREHENSIVE CANCER CENTER University of Iowa Health Care

- Metabolic
 - IDO inhibitor
- Cytokines
 - IL-2, IL-12, etc.
- Oncolytic viruses
 TVEC
- Targeted therapy
 - BRAF, VEGF, etc.
- Chemotherapy
 - Gemcitabine, cisplatin
- Radiation

1. Pardoll DM. Nat Rev Can. 2012;12:252-264.

IDO Background

- Indoleamine 2,3-dioxygenase (IDO) catalyzes conversion of tryptophan to kynurenine. (Munn et al., 1998)
 - Inhibits the effector T cells.
 - Enhances the suppressive Treg.
- IDO can be expressed by tumor cells or by host antigen-presenting cells. (Uyttenhove et al., 2003)
- IDO is commonly found in melanoma and correlates with tumor progression and invasiveness. (Munn et al., 2004).

Synergy of IDO deficiency and PD-1/PDL-1

LIANCE

Methods

- Study Design:
 - Phase 1b: Dose-escalation

Dose Level	Indoximod (oral)	Ipilimumab (IV)
1	$600 \text{ mg BID} \times 28 \text{ days}$	3 mg/kg q3 weeks × 4 doses
2	1200 mg BID × 28 days	3 mg/kg q3 weeks × 4 doses

- Phase 2: RP2D indoximod with provider choice of anti-PD-1/ CTLA-4.
- Progression: Change therapy from one checkpoint inhibitor (anti-CTLA-4 or anti-PD-1) to another while continuing indoximod.

Patient Eligibility

- Inclusion criteria
 - Unresectable stage 3 or 4 melanoma, treatment naïve.
- Exclusion criteria
 - Patients with known active, uncontrolled brain metastases.
 - Patients with autoimmune diseases.
 - Concurrent use of any systemic immunosuppressants or steroids.

Results:

- 9 patients enrolled in phase 1 (3 female)
- No dose-limiting toxicities were observed
- Indoximod RP2D: 1200 mg PO BID
- CR at 14 months
- 6/9 patients are still alive (10-15 months from enrollment) and receiving additional treatment after coming off study.
- Phase 2 is ongoing, 92 Of a planned 96 patients are enrolled.

Responses with Indoximod and Pembrolizumab

Response rate is 53% (8/15) with two CRs

Zakharia, Y et al, Abstract #3075, ASCO Chicago, May 2016.

How about vaccines??

GOING VIRAL AGAINST CANCER

The virus-based cancer therapy T-VEC infects tumour cells and destroys them by stimulating the immune system to direct an attack against malignant cells in the body.

OPTiM Phase III Study Design

3. Site of disease at first recurrence: local/distant

4. Presence of liver metastases

Patients were to remain on treatment beyond progression unless clinically significant (ie, associated with reduced performance status) after 24 weeks. Progression allowed before response.

- Dosing of intralesional T-VEC was $\leq 4 \text{ mL x} 10^6 \text{ pfu/mL}$ once, then after 3 weeks, $\leq 4 \text{ mL x} 10^8 \text{ pfu/mL} \text{ Q2W}$.
- Dosing of GM-CSF was 125 μg/m² subcutaneous daily x14 days of every 28 day cycle.

				Difference		
Response	T-VEC (n = 295)	GM-CSF (n = 141)	Р	%	95% CI	
DRR			< .001			
Patients with durable response, No.	48	3				
DRR, %*	16.3	2.1				
95% CI	12.1 to 20.5	0 to 4.5				
Unadjusted odds ratio	8.9					
95% CI	2.7 to 29.2					
ORR			<.001†			
CR						
No.	32	1				
%	10.8	< 1				
PR						
No.	46	7				
%	15.6	5.0				
ORR, %*	26.4	5.7				
95% CI	21.4 to 31.5	1.9 to 9.5				
Duration of response						
Patients with response, No.	78	8				
Median	NE	2.8				
95% CI		1.2 to NE				
Probability of being in response for all responders‡						
For \geq 9 months, %	68	47				
95% CI	55 to 78	12 to 76				
For \geq 12 months, %	65	47				
95% CI	51 to 76	12 to 76				

	DRR					
	Favors GM-CSF	Favors T-VEC				
	N	\rightarrow	GM-CSF	T-VEC	Diff.	95% CI
All randomly assigned	436	H-H	2.1	16.3	14.1	8.2 to 19.2
Disease stage*†						
IIIB/IIIC	131	⊢ •	0.0	33.0	33.0	19.1 to 43.9
IVM1a	118		2.3	16.0	13.7	0.2 to 24.6
IVM1b	90	← - 1	3.8	3.1	-0.7	-18.6 to 8.7
IVM1c	96 -	• 1	3.4	7.5	4.0	-12.8 to 14.3
Line of therapy*						
First line	203		0.0	23.9	23.9	14.3 to 32.1
Second line or greater	233 H	 1	3.9	9.6	5.6	-3.2 to 12.3
Sex						
Male	250		2.6	16.8	14.2	5.3 to 21.1
Female	186	H •1	1.6	15.6	14.0	4.2 to 22.1
ECOG PS‡						
0	306		3.1	18.2	15.1	7.1 to 21.6
1	114	H1	0.0	12.2	12.2	-2.4 to 21.7
HSV-1 status						
Negative	142		0.0	13.4	13.4	2.0 to 22.2
Positive	253	H •••1	3.8	17.7	13.9	4.5 to 21.1
	-20	0 20	40			

DRR Difference (T-VEC - GM-CSF)

Primary analysis of overall survival (OS) in intent-to-treat population.

Α

⁶ Andtbacka *et al*: J Clin Oncol. 2015 Sep 1;33(25):2780-8

ALLIANCE

FOR CLINICAL TRIALS IN ONCOLOGY

Andtbacka et al: Ann Surg Oncol. 2016 Jun 24

Take Home Message

- Exciting time for oncology in general
- Durable responses and improve survival can be achieved with immunotherapy.
- The field does not stop at PD-1/ PD-L1 inhibitors
- The future is for combination therapy.

